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(X --1< I< -l/v% O<z<llV~~ there correspond two distinct initial values of (x = L,,L,, while 
for solutions of the second type, to each BE By =: (z: -ilVB< r<O, llV~~<z<l) there also cor- 
respond two distinct values of a. In /4/ the initial values for the angles 1 whichcorrespond 
to periodic Poincarg solutions are incorrect. 

The stability conditions for the solutions are written as 

d’Ho a’ <HI> 
YpTQ-=3 $$ (A, - C,)p(l +a)fl -px 1/l -aa"sin2h0>0 (4.9) 

+ (111, 
7’ - 124 (AI - Cl) fS (1 + a) f/1 1/l - a2 sin 2ha#0 

The second of these conditions is satisfied if a,8 # 0, &I, while the first condition is 
equivalent to 

(A, - C,) f3 sin 2h, > 0 (4.10) 

From (4.10) it follows that solutions of the first type are orbitally stable if A,>C1 and 
0 < fI < 1, i.e., --n/2<6<n/2, or if A,<& and -l<p<O, i.e., nl2 <t? < 3~~12. 

Periodic solutions of the second type are orbitally stable if Al > C, and -I< 8 < 0 or if 
A,<C1 and 0< fi< 1. Hence we see that if periodic solutions of the first type are orbitally 
stable, then solutions of the second type are unstable, and vice versa. 

The author thanks A.P. Markeev for suggesting the problem and for his interest. 
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ON THE IMPULSIVE MOTION OF A RIGID BODY AFTER 
IMPACT WITH A ROUGH SURFACE* 

V.A. SINIDYN 

An absolutely rigid plane body in contact with a plane surface of finite 
area, at each point of which the friction is locally defined by Coulomb's 
law, with a constant sliding coefficient of friction, is considered. A 
more precise model of the motion of a body over a rough surface /l/ is 
obtained. Differential equations of a plane rigid body (a plate) with a 
circular contact area are derived. The relation between the sliding 
velocity of the centre of the base area and the angular velocity of the 
plate is obtained in special cases. The condition under which the instant- 
aneous centre of the base velocity in the course of impulsive motion 
coincides identicallywith the base area centre is derived. 

The collision between a rigid and a rough surface has been investigated under conditions 
of point contact (/2/ etc.) 

1. Let us consider the basic assumptions made in /l/ on the interaction between a rigid 
body with a plane base and a plane rough surface, when the body moves on it. 

For absolutely rigid bodies and planes the problem is indeterminate, Since contact occurs 
at an infinite number of points. Hence, a small deformation of the surface proportional to 

*Prikl.Matem.Mekhan.,47,5,737-743.1983 
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the local pressure of the body on it is allowed. The contact surface is assumed plane, and 
its equation 

z=at+By+y (1.1) 

where the coordinate plane XOY coincides with the undeformed plane on which the body moves, 
and the OX and OY axes are the principal axes of the ellipse of inertia with respect to the 
centre of mass of the body base area. We call the base of the body the plane figure obtained 
by projecting the contact points on the plane of the system of coordinates. 

Let us find an expressions for the coefficients in Eq.(l.l) /l/. For an element of the 
base area da, taking into account the choice of coordinate axes, we have 

s xda=O, s xyda=O (1.2) 

We denote by J, and J, the moments of inertia of the base area relative to the OX and 
OY axes 

J,= y2da=opz2, J,= x’da=ap,2 
s s 

(1.3) 

(where ps, pU are the radii of intertia of the base area 0). If the elastic forces during 
the surface deformation obey Hooke's law with proportionality coefficient x, then 

x j zdo = N (1.4) 
where N is the projection of the plane reaction on the OZ axis. 

By d'Alembert principle the following equalities must be satisfied: 

P+I+N+F=Q, M~Pi_M~+M~“+-Muf=O (1.5) 

where P, I, M,P, M,’ are the principal vectors and principal moments of the active forces and 
the forces of inertia, and N, F,M,“, MO’ are the principal vectors and principal moments of 
the normal components of reaction and friction forces of the plane. 

Suppose that of the active forces only the gravity force acts, and the plane on which 
the body moves is horizontal. Then, denoting by .x0 and y0 the coordinates of the projection 
of the centre of mass of the body on the XOY plane, from (1.5) we obtain 

x zxda=Pxo+M,‘, x zyda=Py,-Mz’ 
s s (1.6) 

From here, using equalities (1.2)~(1.4), we obtain 

P 
Cl= Pr0+MV' ( ~=z!k,$, y=., 

WY' 

Substituting (1.7) into (1.1) we obtain the equation of contact plane 

nz,g z*x ( p,a +++I) 

( M' M’ 
Xt =x0++, y+=Yo-+ 1 

(1.7) 

(1.8) 

When x* = yc = 0 the pressure is uniformly distributed over the base area. Thus the 
following statement has been proved: if the moment of the gravity force relative to thecentre 
of mass of the base area is balanced by the projection of the moment of inertia forces on the 
plane, the pressure is the same at all points of the base. From this follows the theorem in 
/l/ on the uniform pressure distribution in the case of quiescence. However, the author's 
indication in /l/ on the applicability of the theorem in the case of motion is not justified. 

Then, following the arguments used in /l/, we conclude that the straight lines of equal 
pressure are parallel to the diameter of the ellipse of inertia, conjugate to the diameter 
passing through the point @+,a,*). 

We introduce the system of coordinates EOV) the oE axis of which is parallel to the 
lines of equal pressure, and the UTJ axis of which is perpendicular to them.andpolarcoordinates 
r, h with origin Q at the instantaneous centre of the base velocities (Fig.1). 

If we assume that Coulomb's law of dry friction is locally valid for all points of the 
contact area, then integrating the expression for the elementary friction force 

where f is the coefficient of friction, we have the following expressions/l/ forthe projections 
of the principal vector and principal moment of the friction forces with respect to thecentre 
9: 

(1.9) 
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Such a detailed consideration of the problem of the centre of pressure C(x,, y,) is due 
to the importance of determining the position of this point in the problem of the motion of a 
rigid body with finite contact area over a surface with friction. 

In the special case, when the body is a flat plate, its centre of pressure is at the 
centre of mass. If in addition I* = y* = 0 (for instance in the case of a homogeneous plate), 
the centre of pressure is at the base area centre of mass. In that case expressions (1.9) are 
substantially simplified, since Al = 0, and it becomes possible to determine the condition 

Fig. 1 Fig. 2 

under which the principal vector of the friction force is directed opposite to the base centre 
velocity. 

For this we will calculate the projection of F on the radial direction of the polar co- 
ordinate system 

P,=--sin8 H,x 
s 

ar do+coat+,~do (1.10) 

Substituting the expressions 

a&q = --co9 (a + e), a&q = -sin (n + e) 
into (1.10) we obtain 

F -- H,Isinkdo V- (1.11) 

Using the representation of an elementary area in polar coordinates do = rdrdh, we change 
in (1.11) from integration over the area to integration over the contour. As the result, the 
condition under which the friction force is opposite to the velocity of the centreis obtained 
in the following form: if the instantaneous centre of the base velocities appertains to the 
base area (Fig. 2,a) then 

*IT 

s r*(k)sinhdh=O (1.12) 
0 

but if, however, the point Q lies outside u (Fig. 2,b), then 

f'[rZ(V - rla (h)]ainI db = 0 @I (I.) = QL,, rt (k) = r (A) - r1 (A) ) 
.x* 

(1.13) 

For a non-convex contour and, also, where there is multiple connectedness, the general- 
izations of (1.12) and (1.13) are obvious. 

2. Let us consider the impulsive motion of a plane rigid body when it collides with a 
plane surface with friction. In addition to the assumptions made in Sect. 1, we assume that 
the deformation of the surface remains very small under the impact forces (this is achieved 
by an unlimited increase in the coefficient x in (1.4)). We further assume the body to be 
a disk whose base is a circle of radius a. The initial state of the disk at the instant 
directly preceding the impact is as follows: the disk plane is parallel to the surface plane 
with which the collision occurs; the disk velocity field has a helical axis perpendicular to 
the disk plane. 

Let us construct the equations of motion of the disk centre of mass and the equation of 
motion relative to the Koenig ares in their projections on the ares of a cylindrical system 
of coordinates p,e,z (Fig. 1) with its centre at the base centre 0. The radial direction of 

the polar coordinates q and 6 are determined by the direction on the instantaneous centre of 
velocities of the base 9. The velocity V, of the centreofmass ofthe disk (point(Z) isrelatedto 
the velocity V, of the base area centre (point 0) by the kinematic relation 

v,=v,+oxw (2.1) 
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where o is the disk angular velocity vector. 
In the course of impulsive motion the change in time is negligibly small; hence we select 

as the independent variable the momentum of the normalcomponent ofthe reaction of the plane, 
which we denote by S, with dS = Ndt. Taking into account that during the impact the change 
in the position of the disk can be neglected, and that the coordinate system rotates, weobtain 

(2.2) 

where the following notation is used: m,J, are, respectively, the disk mass and moment of 
inertia about the CZ axis (p is the radius of gyration), c is the distance of point 0 from 
the centre of mass, -V is the projection of the velocity of point 0 on the transversedirection, 
U, 0 are, respectively, the projections of the velocity of the centre of mass and of the 

disk angular velocity on the 02 axis, and @*,@e, M, are the projections of the principal 
vector and the principal moment of the friction forces referred to the normal reaction N. 

The particular choice of the initial state and plane shape of the body ensure that the 
projections of the angular velocity of the body on the other two axes are identically zero, 
and hence their equations are omitted. The third of Eqs.(2.2) is readily integrable and 
shows that the momentum S, taken as the independent variable, is proportional to the increment 

of u. Hence the limits of variation of S are determined by the change in the velocity u from 
some initial state (preimpact), which must be negative u-(0, to zero (the first phase of 
impact /2/). The second phase is determined by the elastic properties of the interaction 
between the disk material and surface , and can be defined by the coefficient of restitution 
O,< e,< 1, which enables us to determine the post-impact velocity u+ = -au' and, consequently, 
the instant when impulsive motion ceases. 

Let us consider the special case when the centre of mass of the disk coincides with the 
base centre (~50). Then 0, = 0, and (be and M, follow directly from formulas in /3/. 
From Eqs. (2.2) we obtain 8 = const and the equations 

dV kh(W k-y 
dn'I'fs(k) Q' V,<sz 

dV 11 R) Q 
=- fr(k3 

-p-, klIT, h2<V 

(2.3) 

B = oa, p = 3pZlaa 

fl 04 = (P + 1) E (k) - (k4 - 1) K (k) 

fs (k) = k-’ [(4 - 2k-*) E (k) - (k-% - 1) (3P - 2) K (k)] 

f~ (k) = (4 - 2k2) E (k) - (1 - kz) K (k) 

where K(k) and E(k) are the complete Legendre elliptic integrals of the first and second 
kind with modulus O< k,< 1. 

The behaviour of the function fi,fr,fs was considered in /4/ when investigating the 
admissibility of neglecting the finite dimensions of the contact area of a rolling body and 
a plane. It was shown that in the interval 0 ,<kQ 1 these functions are monotonic and of 
constant sign. Hence, it is possible to limit the consideration to the integral curves (2.3) 
only in one quadrant of the plane V&2. The straight line V- 61 divides the quadrant 
into two regions in each of which all integral curves can be derived from one integral curve, 
using the similitude transformation, with the centre of similitude at the origin of coordinates 
The coordinate axes V = O,P = 0 are the trajectories of the imaging point. Hence all 
trajectories of that point pass through the origin of coordinates. Consequently, we come to 
to conclusion that when the initial centre velocity (the centre of mass is at the centre of 
the circular base), and the angular velocity are non-zero, during impact they can only vanish 
simultaneously and remain equal to zero. 

We will linearize the right-hand sides of Eqs.(2.3) for small k, taking into account the 
expansion in series of the elliptic integrals in powers of kJ in the neighbourhood of the 
point k= 0. We obtain the following approximate equations and respective relations between 

V and o for the two cases: 

a) V<ao (020) 

mV’ = -fVlQ J,o’ = -2afI3, mu’ = 1; V = V- (~/qu/r 

b) V>sa (020) 

(2.4) 

(2.5) 
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where the prime denotes derivatives with respect to S. 
It'is interesting to compare (2.4) and (2.5) with the hypotheses of the impact of so- 

called plane particles (non-rotating) with a surface with friction. 
In case a) the angular velocity e+ at the instant the impact ends (tobe specific we will 

assume the impact to be absolutely inelastic) is related to the initial velocity of approach 
4=.=-u- by the equation 

,+=.-_$$u, 
hence, from the last of formulas (2.4) we have 

For plane bodies, without slippage or partial slippage, in technical calculations the 
hypothesis z+' = r;(i -R), where z_', z+' are the relative velocities before and after collision, 
and I is an empirical coefficient, is recommended in /5/. 

In case b) from Eqs.(2.5) we obtain 

v+ - v- = +(I&+ - u-) 

This case corresponds to impact with complete slippage for which the hypothesis /5/ z+'-z_.'= 
f' (v_' - p+‘) is applied,where f' is a coefficient obtained experimentally, and u_-'. I+' are 
the components of the particle velocity normal to the surface before and after the impact. 
The conclusions that can be drawn frau the comparison are obvious. 

When c#O, the expressions on the right-hand sides of (Pa,O~,M, are obtained using 
the results from /l/, taking into account the remark in Sect. 1 

U# = rC, (cpa - cpa) cos6, @e = --hz (cpr -I- 'Pa - 4%)sin 6 + Q+ 

M c=--b(--4+2qcpr)sine-_WIcpr+cDpecoa0 +@e(p-ccin6); hl=-$-, h,=$ 

(The functions cpl,(pl,'pa,~, are denoted in Sect.1 by fl,fn,fs,f,). 
When c#O we obtain for motions for which 6 =n/2 from Eqs.(2.21, using (2.61, 

homogeneous differential equation 

m dV 
-7yK+~=$ 

where a and M,are calculated for 8 =x/2. 
For small V/B we obtain from (2.7) by linearization the approximate equation 

dV/dQ = 6 + vVk-2 

whose solution has the form 

v=crr,-+n 

(2.61 

the 

(2.7) 

(2.8) 

(2.9) 

where C is the constant of integration, and the constant coefficients 6 and Y are obtained 
using the coefficients of expansion of the functions g~,,cp,,'pa,cp~ in series 

ql=alq,+ . . . . ~s=a,+a,qf . . . . vr=ad+..., ‘PI -ad+. ..; 

al = M, ao = 2xaY3, a, = a, = 0, a, = zaa, 9 = VII @I 

When 8 = -a%12 (V<Q), we obtain the dependence of V on 0 by substituting 6 +---6 into 
(2.8) and (2.9). 

Since the contact over the whole area of the circle is only possible when c <a/h (see 

(1.81, we have 2F - 1#0. 
Note that the results of the function f, in /l,p.lSl/ do not correspond to theexpression 

for that function in /l, p.lSO/. 
The conditions 6 = fn/2, %‘<a, under which solution (2.9) was obtained mean that in the 

course of impulsive motion the instantaneous centxe of the base velocities is a line perpend- 
icular to the lines of equal pressure near the centre of the circle (point 0). The non- 

coincidence of the centre of pressure and the base centre leads to the conclusion that, 

generally, the base centre velocity may vanish not only when 0 = 0, as was the case when 

c = 0. 
Let us establish one more property of impulsive motion (c# 0), namely that the instant- 

aneous centre of the base velocities coincides identically with the centre of the circular 
base in the course of impulsive motion (V E O), if the condition 

2 (p* + 3) = aa (2.10) 
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is satisfied. Relation (2.10) can be obtained using the equations of rotation of the disk 
under the action of impact forces due to friction 

J&u = -MS; Jo = J, + m9 (2.11) 

where Am is the angular velocity increment during the impact. 
The equation of motion of the centre of mass leads in this case to the equation 

mcAo = -U+S (2.12) 

Under conditions of the motion considered here M and@ashould be taken in (2.11) and 
(2.12) in the form /l/. 

M = 2i+z,, CDt = h,a, 

From (2.11) and (2.12) we obtain the linear dependence of the angular velocityincrement 
on the normal reaction momentum 

Am=- 4i ss; 
&m 

-&AU 

where in addition to (2.10) the value of the coefficient a0 = %a"/3 is taken onto account. 
For practical purposes we will formulate this property in the form of a statement. If 

a plane rigid body rotates about an axis passing through the point 0 normal to the body plane, 
then at the instant of collisional start of frictional braking (along the axis of rotation) 
with circular contact area, the axis does not experience transverse impact loads when a" = 2lc, 
where 1 is the reduced length of the physical pendulum. 

The last equation follows from a comparison of (2.10) with the requirement that the 
momentum of the resultant friction forces is applied at the centre of impact. If, for example, 
c = a/4 (the ,line of zero pressure touches the contour of the circular contact area),. the 

diameter of that circle must be equal to the reduced length. In the trivial case when c = 0 
we have VEO for any value of a. 
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RELAXATION IN DISSIPATIVE MECHANICAL SYSTEMS* 

L.D. ESICIN 

An asymptotic expression for long times is obtained for a In-parametric 
family of solutions of a Hamiltonian system with n degrees of freedom, 
modified by the addition of generalized dissipative forces. The method 
used here is based on a preliminary study of the solutions ofa linearized 
system of equations, followed by the application of the Schauderprinciple 
in Banach space with a suitably chosen norm. 

1. The aim of this paper is to study relaxation in a mechanical system, the equations 
of motion of which are written in the form 

(1.1) 

Here p,q are (fz X I)-vectors (columns) of generalized momenta and coordinates, and the@ X 1)- 
vector Q(t, p,q) defines the Lagrangian forces in tER+,p,q variables. 
in 41 coordinates begins with terms of at least the third order. 

The expansion n,(q) 
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